Skip to main content

Translation WMT17 en-de


NOTE To make your life easier, run these commands from the recipe directory (here recipes/wmt17).

Tokenization methods

The following configurations as provided as example:

  • wmt17_ende_yaml: "legacy" configuration, using already tokenized data;
  • wmt17_ende_bpe.yaml: on-the-fly bpe tokenization, using the "official" subword-nmt based bpe transform;
  • wmt17_ende_bpe_onmt°tokenize.yaml: on-the-fly bpe tokenization, using the pyonmttok based onmt_tokenize transform;
  • wmt17_ende_spm.yaml: on-the-fly sentencepiece tokenization, using the official sentencepiece based sentencepiece transform;
  • wmt17_ende_bpe.yaml: on-the-fly sentencepiece tokenization, using the pyonmttok based onmt_tokenize transform;

Get Data and prepare

WMT17 English-German data set:

cd recipes/wmt17
bash prepare_wmt_ende_data.sh

Options:

  • --method: bpe/sentencepiece (subwords method to use)
  • --encode: true/false (tokenize all datasets, not necessary if using on the fly transforms)

If you want to use one of the aforementioned configurations with on-the-fly transforms, set --encode false, and either of --method bpe/--method sentecepiece.

Train

Choose the config you want to run:

export CONFIG="wmt17_ende_bpe.yaml"

Training the following big transformer for 50K steps takes less than 10 hours on a single RTX 4090

eole build_vocab --config $CONFIG --n_sample -1 # --num_threads 4
eole train --config $CONFIG

Note: if you need to perform some visual checks on the "transformed" data, you can enable the dump_samples flag at the build_vocab stage (and specify a smaller -n_sample for efficiency).

Translate test sets with various settings on local GPU and CPUs.

Notes:

  • the exact model path depends on the config you chose. You can check your logs for the exact path.
  • the "root" model links to the last saved step, but you can choose any step subfolder if needed (e.g. --model_path wmt17_en_de/transformer_big_bpe/step_10000)
eole predict --src wmt17_en_de/test.src.bpe --model_path wmt17_en_de/transformer_big_bpe --beam_size 5 --batch_size 4096 --batch_type tokens --output wmt17_en_de/pred.trg.bpe --gpu 0
sed -re 's/@@( |$)//g' < wmt17_en_de/pred.trg.bpe > wmt17_en_de/pred.trg.tok
sacrebleu -tok none wmt17_en_de/test.trg < wmt17_en_de/pred.trg.tok

BLEU scored at 40K, 45K, 50K steps on the test set (Newstest2016)

{
"name": "BLEU",
"score": 35.4,
"signature": "nrefs:1|case:mixed|eff:no|tok:none|smooth:exp|version:2.0.0",
"verbose_score": "66.2/41.3/28.5/20.3 (BP = 0.998 ratio = 0.998 hyp_len = 64244 ref_len = 64379)",
"nrefs": "1",
"case": "mixed",
"eff": "no",
"tok": "none",
"smooth": "exp",
"version": "2.0.0"
}
{
"name": "BLEU",
"score": 35.2,
"signature": "nrefs:1|case:mixed|eff:no|tok:none|smooth:exp|version:2.0.0",
"verbose_score": "65.9/41.0/28.3/20.2 (BP = 1.000 ratio = 1.000 hyp_len = 64357 ref_len = 64379)",
"nrefs": "1",
"case": "mixed",
"eff": "no",
"tok": "none",
"smooth": "exp",
"version": "2.0.0"
}
{
"name": "BLEU",
"score": 35.1,
"signature": "nrefs:1|case:mixed|eff:no|tok:none|smooth:exp|version:2.0.0",
"verbose_score": "66.2/41.2/28.4/20.3 (BP = 0.992 ratio = 0.992 hyp_len = 63885 ref_len = 64379)",
"nrefs": "1",
"case": "mixed",
"eff": "no",
"tok": "none",
"smooth": "exp",
"version": "2.0.0"
}